Problem Fermentations

...and how to troubleshoot them

Neva Parker White Labs

ROOT CAUSE ANALYSIS

How we find answers

4 Most Common Problems

Root cause for the problem Fix (prevent) the problem

THANK YOU FOR YOUR ATTENTION

Neva Parker nparker@whitelabs.com

••

Know & UNDERSTAND your flocculating: collection or

Phenolics

Nutrients

Conical Fermentors: Best practices

Carboys: Best practices

- . Use only the middle pack

Keep metabolic activity to an absolute minimum in order to preserve viability and vitality

- · Cool the yeast quickly and keep it cold (38-40F)
- . Store yeast for as short a time as possible
- . Time results in Viability loss due to glycogen depletion. ethanol stress, CO2 stress

Energy reserve stored by yeast during

Problem Fermentations

...and how to troubleshoot them

Neva Parker White Labs

ROOT CAUSE ANALYSIS

How we find answers

4 Most Common Problems

Root cause for the problem Fix (prevent) the problem

THANK YOU FOR YOUR ATTENTION

Neva Parker nparker@whitelabs.com

Phenolics

Poor turbulence in fermentor

Know & UNDERSTAND your

Nutrients

Conical Fermentors

Carboys: Best practices

Keep metabolic activity to an absolute minimum in order to preserve viability and vitality

Poor yeast collection on

- · Cool the yeast quickly and keep it cold (38-40F)
- · Keep air/oxygen contact to an absolute minimum (WHY?)
- · Store yeast for as short a time as possible
 - · Time results in visibility loss due to plycogen depletion. ethanol stress, CO2 stress

Problem Fermentations

...and how to troubleshoot them

Neva Parker White Labs

ROOT CAUSE ANALYSIS

How we find answers

Esters &

fusels

How we find answers

dependent on:
Activity, time, and
temperature

Make sure you have enough of these 3 things!

4 Most Common Problems

Root cause for the problem Fix (prevent) the problem

Slow, sluggish or stalled
 Fermentation

2. Quick drop in yeast viability

3. Change in flocculation

4. Fermentation off-flavors

THANK YOU FOR YOUR ATTENTION

Neva Parker

ROOT CAUSE ANALYSIS

How we find answers

1. Slow, sluggish or stalled fermentation

Low viability or

vitality

Under- or Over-Pitching

Low Dissolved Oxygen

Gravity (

Figure 4

resourc

Figure 4. Fermentation performance of worts with various yeast generations with depleted oxygen resources.

Lack of Nutrients

Can more oxygen be added?
What about more yeast?
More nutrients?

ep Guide

My Step-by-Step Guide

- 1. If you can, raise the temp 2 degrees & rouse the yeast
- 2. Add more oxygen if attenuation
- is still 50% or less

ng yeast is difficult to If all else fails:

Add more ACTIVELY fermenting yeast

Add more nutrients (but this is difficult to

do in a sterile way)

degrees 8

2. Add m

2. Quick drop in yeast viability

Poor yeast collection or storage

is still 50% or les

If all else fails:

Add more ACTIVELY fermenting yeast

Add more nutrients (but this is difficult to

do in a sterile way)

Conical Fermentors: Best practices

· Timing - end of fermentation, depending

Carl Best pr

• Timing - er

Conical Fermentors: Best practices

- Timing end of fermentation, depending on strain
- Remove as soon as possible without risking integrity of beer
- · Discard the first runnings
- · Use only the middle pack

Carboys: Best practices

- Timing end of fermentation.
 - · But less critical than with conicals
- Transfer beer from carboy, then transfer yeast to a sterile container
- · Use only the middle pack

- Timing end of fermentation, depending on strain
- Remove as soon as possible without risking integrity of beer
- · Discard the first runnings
- · Use only the middle pack

- Timing end of fermentation.
 - · But less critical than with conical
- Transfer beer from carboy, then transfer yeast to a sterile container
- · Use only the middle pack

Objective:

Keep metabolic activity to an absolute minimum in order to preserve viability and vitality

OW?

- · Cool the yeast quickly and keep it cold (38-40F)
- · Keep air/oxygen contact to an absolute minimum (WHY?)

GLYCOGEN

Energy reserve stored by year times of starvation

· Store yeast for as short a time as possible

STORAGE

Keep metabolic activity in order to preserve viat

HOW?

- · Cool the yeast quickly and keep it cold (38-40F)
- · Keep air/oxygen contact to an absolute minimum (WHY?)

ODJCC LIVE.

- · Store yeast for as short a time as possible
 - · Time results in viability loss due to glycogen depleti

GLYCOGEN

Energy reserve stored by yeast during times of starvation

Presence of oxygen signals metabolism of glycogen

HOW?

- · Cool the yeast quickly and keep it cold (38-40F)
- · Keep air/oxygen contact to an absolute minimum (WHY?)

- · Store yeast for as short a time as possible
 - Time results in viability loss due to glycogen depletion, ethanol stress, CO2 stress

Energy

Presence

3. Change in flocculation

Lectin –like Proteins

Mannan receptors

Yeast Cell

Yeast is not flocculating:

Problems with pitching yeast: Mutations, older yeast populations

Flocculation "Blockers"

Yeast is flocculating too early:

early:

- Problems with pitching yeast:
 Low viability, vitality, yeast health
- Natural mutations, as with German wheat strains, Belgian strains
- Other factors that inhibit good fermentation performance:
 Low temp, low oxygen, low nutrients

Poor turbulence in fermentor

Figure from: Brewing,

Michael J. Lewis and Tom W. Young

an

re

If possible - resolve the issue.

If not, start over with fresh yeast

4. Fermentation off-flavors

Phenolics Unintentional clove, spice Band-aid, plastic

Mutation of yeast due to stress

Cross-contamination

Contamination by wild yeast

Esters & fusels

Excessive fruit, bubblegum Excessive "hot" aromas Insufficient temperature control

Underpitching yeast

Once these are formed they stay

Focus on PREVENTION

Diacety

Buttered popcorn Slick mouthfeel

Slow or incomplete fermentation

Yeast flocculating too soon

Removal of yeast from beer too soon

Diacetyl uptake is dependent on:
Activity, time, and temperature

Make Sure you have enough of these 3 things!

WHAT DID WE LEARN TODAY?

rmentation is a metabolic process, and yeast are living organism

Fermentation and yeast handling affect yeast condition

Yeast condition affect subsequent fermentations

Know & UNDERSTAND your fermentations

THANK YOU FOR YOUR ATTENTION

Neva Parker nparker@whitelabs.com

