Shortcut to Sour Kettle Sour Tips

Luke Barrett David Coyne Sultan of Sensory

Barrel Baron

What is a Kettle Sour?

	Method	Pros and Cons	Styles of Beer made this way	Microbes Used
Kettle Sour (Soured Wort & Quick Souring)	Soured wort over a couple days in the Kettle, Mash Tun, or a Fermenter	No bacteria in the fermenters or Packaging Equipment	Berliner Weisse, Gose, and just straight kettle sours	Saccharomyces and Lactobacillus
Pitched Mixed Cultures	Soured after the boil in a stainless Fermenter or Oak Fermenters	Lab grown bacteria and "wild" yeast in fermenters and packaging	Berliner Weisse, Gose, Flemish Red and Oud Bruin, and American Sours	Saccharomyces, Brettanomyces, Lactobacillus, Pediococcus, and Acetobacter
Spontaneous Sour Beer	Bacteria and Yeast captured naturally in the air, most commonly through a coolship (koelschip)	Who knows what in your fermenters and packaging	Lambic, Gueuze, and Kriek (Oude-100% spontaneous) some American Producers	Lots

Types of sour beer production

	Method	Pros and Cons	Styles of Beer made this way	Microbes Used
Kettle Sour (Soured Wort & Quick Souring)	Soured wort over a couple days in the Kettle, Mash Tun, or a Fermenter	No bacteria in the fermenters or Packaging Equipment	Berliner Weisse, Gose, and just straight kettle sours	Saccharomyces and Lactobacillus
	Soured after the boil	Lab grown bacteria	Berliner Weisse,	Saccharomyces,
Pitched Mixed Cultures	in a stainless Fermenter or Oak Fermenters	and "wild" yeast in fermenters and packaging	Gose, Flemish Red and Oud Bruin, and American Sours	Brettanomyces, Lactobacillus, Pediococcus, and Acetobacter

Types of sour beer production

Sour Mash	Kettle Souring	Fast Souring in Another Vessel
Lactic Fermentation in the Mash after saccharification rest -raise to mash out temps before run off -Clean Mash Tun really well	Lactic Fermentation in the Kettle - Sour before boil if you want to kill all the Lacto or sour after boil if you want Lacto to live on in fermenter	Lactic Fermentation in carboy, corny keg, or fermenter -Transfer to a fermentation vessel to sour then move back to kettle to finish beer
-Most difficult to control	-Versatile -Easier to control	-Maybe easier to keep at 85-120F for Homebrewers -Quicker turn around on Kettle for Production breweries

Methods of Quick Souring

- 1. Mash and sparge like normal
- 2. If using Acid malt to drop pH to \sim 4.6 add after mash rest
- as possible like you would a fermenter at this point
- temp
- 5. While dropping temp, add lactic acid to kettle to drop pH to ~ 4.6
- oxygen
- **7. Add Lacto to kettle**
- 8. Rouse with co2
- **9.** Blanket top of kettle with co2
- **10.Keep kettle free of oxygen until target pH is reached**
- **11.Boil and proceed as usual**

3. Boil for at least 15 minutes to sterilize wort and kettle. Keep kettle as sanitary

4. Recirculate through heat exchanger to bring wort down to Lacto pitching

6. ALSO while dropping temp, add steady stream of co2 to wort to purge out all

Process Overview

Grain

Lab Pitch

Sources of Lactobacillus

Undercurrant

FORT GEORGE BREWERY

O.G. 1.035 // F.G. 1.009 O.G. 1.053 // F.G. 1.014 ABV 3.4% // IBU: 7 ABV 5.1% // IBU: N/A 5gal batch 10 bbl batch Great Western Pilsner - 4.5 lbs - 53% **Great Western 2-Row - 429lbs - 89.6%** Roasted Barley - 12lbs - 2.2% White Malted Wheat - 3.5 lbs - 41% Acidulated - 25lbs - 4.6% DME 0.5lbs - 6% **Dextrose - 20lbs - 3.6%** East Kent Golding 10g Mosaic 4lbs Hull Melon 10g Lactic Acid 250 mL Lactic Acid 7mL Imp. Tartan (Scottish) ale Yeast Lallemand Bry-97 West Coast Yeast 3 gallon lactobacillus starter **800ml lactobacillus starter 42lbs Black Currant Puree** pH drop in kettle souring 5.35 to 3.35 pH drop in kettle souring 4.7 to 3.35 over 96 hours over 72 hours

Belly Full of Bugs HOMEBREW

Undercurrant

Belly Full of Bugs

- •Low mash temp
- •Acidulated <10%, usually 3-5%
- •Lactic acid to make up rest of pH drop
- •Clean crisp malts, sometimes use wheat and oats for body
- Mixed reviews on crystal and dark malts

Belly Full of Bugs HOMEBREW

- Missed mash temp
- •Target 149° // Actual 145°
- •Left bag in kettle as I raised the temp to 170°
- may have helped attenuation

First Boil

Cooling for Lacto Fermentation

- •Keep entire kettle consistent and not stratified for accurate temperature
- Constant CO_2 stream to purge out all oxygen to create anaerobic environment for lactobacillus
- •This is when I add lactic acid to complete pH drop
- •Remember to keep kettle sanitary and not introduce unwanted microbes

Belly Full of Bugs HOMEBREW

- •Keeping O_2 out of wort while cooling slowly bubbling CO_2 in through kettle valve.
- If you don't have a valve maybe use a carb or Oxygenating stone.

Cooling for Lacto Fermentation

Dropping pH to ~4.5

•Dropping temperature and pH helps fight off spoiling bacterias that produce butyric acid (vomit, rancid milk), indole (feces, rotting flesh), and isovaleric acid (cheesey, sweaty)

Belly Full of Bugs HOMEBREW

Dropping pH to ~4.5

Pitching Lacto

- Different temps for different Lacto strains, 85-115
- Different flavor profiles
- "propagating" in apple juice
- •Tried harvesting, successful but need to keep cool and without pressure
- •Homofermentative (glucose to lactic acid) vs heterofermentative (glucose to lactic acid, ethanol, acetic acid, and co2)

Belly Full of Bugs HOMEBREW

- Sacrificed one of my corny kegs for Sour projects
- •Consider using Chalk (CaCO3) for lacto starter to keep down acid levels, allowing Lacto to grow more.

Monitoring pH

Taco Break

Second Boil

- Some brewers say quick boil, some say very long (boil off dms)
- •Depends on malt used and flavor profile desired
- •At least 30 minutes is a good idea to fully kill Lacto

Belly Full of Bugs HOMEBREW

- •Check Gravity 1.002 drop maybe normal. Any more may be contamination
- Plan hop additions for this amount
- •Brewed on Stove top because it was snowy outside

Second Boil

Chilling and Pitching Yeast

- Definitely aerate/oxygenate
- •Ester production minimal at low pH
- Attenuation harder at low pH
- •Brettanomyces with kettle soursuper clean production
- Anecdotal success conditioning on brett but not as primary

Belly Full of Bugs HOMEBREW

- •Re-hydeated yeast
- Pitch twice as much because of lower pH
- •Make yeast starter if there is time

Chilling and Pitching Yeast

- Pucker Pie strawberry & rhubarb
- Eat a Peach peaches
- Cherries & Berries two types of cherries & blackberries • Abracadabra - "traditional berlinerweisse"
- Gose Bump in the Night black gose
- •Hocus Pocus Abracadabra with cranberries
- Brown Eyed Girl brown sour
- •**Tea Rex** arnold palmer (black tea & lemon peel)
- Sucker Punch lemon & lime peel
- Chasing the Dragon dragonfruit, kiwi, and black currant • **Undercurrant** - black currant

Fort George Kettle Sours

1.Pre-acidify wort pH to 4.5 2.Keeping Wort warm (85-120F) **3.Keeping wort as sanitary and oxygen free as possible** 4. Microwaving a steak – Jamil Zainasheff

While a starting pH of 4.5 will generally eliminate the risk of bacteria that can cause food poisoning, use caution when tasting the results of a sour mash. Only a low pH and the presence of alcohol from yeast fermentation can ensure that your fermented product is safe to drink. –Sour Beer Blog

- •<u>American Sour Beers</u>- Michael Tonsmeire
- themadfermentationist.com
- CBC talk from Breakside, The Commons, and Gigantic
- Milk the Funk wiki/facebook group
- •The Sour Hour Brewing Network podcast
- <u>sourbeerblog.com</u>

Luke@fortgeorgebrewery.com

Bucstions? No hard ones.

David Coyne <u>coyne@fortgeorgebrewery.com</u>

